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Transport coefficients are calculated as functions of porosity using an ordered 
model of granular porous media. We consider grain-spheres situated at the nodes 
of various crystalline lattices. The behavior of the transport coefficients at 
low porosity values is considered. A comparison with experimental data is per- 
formed. 

Introduction. The dependence of transport coefficients (electrical conductivity p, 
diffusion D, gas permeability K) in porous media upon the porosity q is often represented 
in the form of power laws [i]. The best known of these is the experimentally established re- 
lationship between o of a porous medium, the pores of which are filled by an electrolyte with 
conductivity o 0,and ~ (Archey' s law) : 

- Coq~ t, ( i ) 
o- o 

where c 0 is a constant of the order of unity, and s is an exponent which depends weakly on 
. The present study will consider granular porous systems, i.e, those obtained by pressing 

grains of approximation one size, with form close to spherical. The experimental data of [2] 
on o for a medium formed by pressing glass spheres are described over a wide range of q; 
(0,02~<0,40) by Eq. (i) with variation of s from s z 1.5 at high q~ to s = 2.3 at low q~ 
However, power expressions of the form of Eq. (i) for the transport coefficients are approxima- 
tions, since they do not consider the geometric properties of the concrete porous medium. The 
character of the o(~p), I((~) dependences can be refined by choosing a model for the pore space 
geometry. We note that at a gas molecule free path length % much less than the characteristic 
pore size, the dependence of the effective diffusion coefficient coincides with o(~) 
in light of the equivalence of the equations describing these processes. 

Various models have been used to describe the structure of porous media, including both 
ordered and unordered ones [3]. In the capillary model of porous media K is expressed by the 
Carman-Kozeny relationship [i] t(~~3/w 2. However the capillary model does not reflect the 
true features of pore space geometry in granular porous media, in particular, changes in sec- 
tion of a pore channel along length. The ordered model proposed in [4] is closer to the real 
geometry of pores in granular porous media. Approximate calculations of a(~p) were performed 
in [4] for such a medium with the assumption that the electrical conductivity of each pore 
channel, the network of which forms a pore lattice, is proportional to the area of the minimum 
section of that channel. The functional dependences ~(~p) obtained in this manner were then 
normalized to experimental values. 

The real granular porous structure which spherical grains packed into a volume form is 
known as random close packing (RCP, [5]). The RCP structure occupies an intermediate position 
with respect to ~ (~p (RCP) ~0,36) between spheres located tangent to each other at the nodes 
of a simple cubic (SC) lattice and a face-centered cubic (FCC) lattice (q (so) ~0,476. qo (FCC) 
~0,260) The RCP structure also occupies an intermediate position with regard to the number 

N of bond-pores per node: for RCP N = 4 [4], for SC N = 6, and for FCC N = 4. These facts 
permit the proposal that the values of the transport coefficients for RCP at ~ values not too 
low will also lie between those of SC and FCC lattices, which permits estimation of the trans- 
port coefficients for RCP. 

In the presentstudy we will calculate o(qD) and K(%0) for various ordered lattices, the 
structure of which is based on the model of [4], in the approximation: 
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Fig. I. Granular structure geometry: a) structure 
for SC lattice (pore space shaded); b) longitudin- 
al section of pore channel. 

l ~. 1 i' dz 
g ~ S ( z )  ' k ~ S 2(z) ( 2 )  

Th~ e r r o r  o f  Eq. (2 )  can be e v a l u a t e d  by c o m p a r i s o n  w i t h  p rob l ems  which  p e r m i t  e x a c t  s o l u t i o n s .  
The calculated transport coefficients can be compared to experimental dependences. Together 
with the ordered model we will evaluate the disorder in the pore structure of real granular 
porous media responsible for the change in s in Eq. (i) at small ~ values. The character 
of the vanishing of the transport coefficients as ~-+~ (the critical value 9, corresponds 
to the point where the pore space ceases to be interconnected) will also be studied. 

Model Description. Transport Coefficient Calculation. We will construct lattice mod- 
els of porous media, the transport coefficients of which we will then compare to coefficients 
in real granular media. We will describe a model for the example of the SC lattice. The cen- 
ters of the grains,,which initially have a spherical form and are tangent to each other, are 
located at the nodes of an SC lattice. The distance between the sphere centers is 2a, initial- 
ly a = a0, and the sphere radius R = a 0. Such a situation corresponds to the maximum value 
of ~. Decrease in a with preservation of the volume of each sphere leads to their deforma- 
tion and decrease in ~ (Fig. la). We will assume that at points where the grains do not touch 
each other, they maintain the form of spheres of radius R. Such grain deformation is an ana- 
log of the pressing of real granular porous media. 

In this model the pore space is a cubic lattice of identical channels having variable 
cross section. The critical value ~e corresponds to vanishing of the minimum channel section 
Smin. The parameter defining ~ and the area S of the pore channel cross section is the quan- 
tity u=R/a. We will consider change in ~ over the range [i; r The value • corres- 
ponds to tangency of undeformed spheres, while at • Smm=0. The condition of conservation 
of grain volume under deformation yields the function a(u): 

1 

a(• u2=_=2• 3 ) 3 
t 2  2 

I~ the case of an SC lattice cp is given by 

(3) 

6 -2- --4- (•  1)2 § --3 - ( •  1)a' (4) 

~(I)  ~ 0,476; ~ (1/~) = ~c ~ 0,0349: 

Along t h e  z - a x i s  o f  t h e  p o r e  c h a n n e l  S ( z )  v a r i e s  p e r i o d i c a l l y  w i t h  a p e r i o d  2a.  The e l e c -  
t r i c a l  c o n d u c t i v i t y  o f  t h e  p o r e  s t r u c t u r e  i s  d e f i n e d  by t h e  c o n d u c t i v i t y  g o f  t h e s e  c h a n n e l s .  
For  S(z ,  z) a s i m p l e  g e o m e t r i c  t r e a t m e n t  y i e l d s  ( - a  < z < a ) :  

S =  4 - - ~ d §  1 d 

(5) 
S = ( 4 - -  nd) a 2 for  d < 1, 
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where d=• 2 For d < i are not separated from each other by grains. Since for calcu- 
lation of the transport coefficients in the approximation of Eq. (2) only the dependence 
S(u, z) is important, for convenience we replace the pore channel by a channel formed by a body 
of revolution about the z-axis with area at the point z equal to S(• from Eq. (5). The 
radius of such a channel r(z) =~S(• z)/~, and its longitudinal section is shown in Fig. lb. 
We denote r(0) = a, the value corresponding to Smi n. 

Using Eq. (5) we find g and k in the approximation of Eq. (2). For a given pore lat- 
tice geometry defined by the grain position (in the given case, the simple cubic lattice) and 
~p(~) from Eq. (4) we obtain ~(~), K(~) of the medium. 

We will evaluate the accuracy of the approximation of Eq. (2) by comparison with the 
exact solution of the problem of resistance of an infinite single-cavity hyperboloid of revo- 
lution, the surface of which is given by the equation 

9~ z ~ 
- - =  1, (6 )  

A2 B ~ 

where  p2 = x 2 + y2 .  The r e s i s t a n c e  o f  such  a h y p e r b o l o i d  can  be found  by s o l v i n g  t h e  L a p l a c e  
e q u a t i o n  AV = 0 in  e l l i p s o i d a l  c o o r d i n a t e s  [6] w i t h  b o u n d a r y  c o n d i t i o n s :  V = • a t  z = • 
and 8V/~n = 0 on t h e  h y p e r b o l o i d  s u r f a c e .  The e x a c t  s o l u t i o n  o f  such  a p r o b l e m  g i v e s  t h e  
value of the quantity ~ inversely proportional to the hyperboloid resistance, in the form 

~ .  = 2 B ( ] / ~ +  1 - -  1), ( 7 )  

whree  u = A/B. The a p p r o x i m a t e  v a l u e  g i v e n  by Eq. (2 )  f o r  t h e  a n a l o g o u s  q u a n t i t y  o H i s :  

% = B~.  (8 )  

The r a t i o  oH/OH o b t a i n e d  f rom Eqs .  ( 7 ) ,  (8)  c h a r a c t e r i z e s  t h e  a c c u r a c y  o f  t h e  a p p r o x i m a t i o n  
used. 

In a similar manner we can compare the exact value of the gas permeability KH to the 

approximation of Eq. (2). To determine KH of the hyperboloid of Eq. (6) one must solve the 

equations: divv=0, gradP=qrotrotv For the given values P(z = i~) = • and the gas flow 

Q found through the hyperboloid we find KH ~ Q/2P . For the quantity KH solution of the prob- 
lem yields: 

K H -  2B3 
3 ((72 - -  2) ]/'~z J-L I ~- 2). (9 )  

The a p p r o x i m a t e  K H o f  Eq. (2 )  f o r  t h e  h y p e r b o l o i d  o f  Eq. (6 )  h a s  t h e  fo rm:  

B 3 
K .  = ~v~. ( lO )  

The ratios OH/OH and KH/KH from Eqs. (7)-(10) are sbow~ as functions of 7 in Fig. 2. 

We will consider the deviations of the approximation solutions from the exact ones in 
the region of change of ~, which corresponds to the Same range of the parameter h for the 
two problems: the hyperboloid of Eq. (6) and the ordered lattice described by Eqs. (3)-(5). 
The parameter h is the ratio of the two radii of curvature of the surface at the point z, cor- 
responding to S = Smin, i.e., z = 0. For the hyperboloid of Eq. (6) h I = 72; for the channel 
given by Eq. (5) (Fig. ib) h 2 = ~/R. In the range considered ~0,476 the parameter 

0~h2~0,4 , which at h I = h 2 corresponds to 0~y~<0,64 . For y < 0.64 the ratio OH/OH > 0.91, 

KH/KH > 0.89. Thus, in the case considered the approximation of Eq. (2) can be regarded as 
completely satisfactory. 

With grain location at the nodes of other lattices relationships similar to Eqs. (3)- 
(5) can be obtained, thus yielding o(~), K(~). Results of such calculations and comparison 
with experimental data from [2] are shown in Figs. 3, 4. We note that the calculated K is 
written in the form 

K = a~F (9), (11)  

where F(~) is a dimensionless function obtained from Eqs. (3)-(5) in the approximation of 
Eq. (2). In such form K is expressed in m ~. The calculation results shown in Figs. 3, 4 

1507 



_0 . /0  H 

K"IK~,O, 

~5 

| I I l I 

0 1 2 ] 4 5~ 

Fig. 2. Comparison of approximations of Eq. (2) 
with exact solution for single-cavity hyperboloid 
of revolution: i) OH/aH; 2) KH/K H. 

show that as q~-+q),,, q)>~c , the calculated 1/~, 1/K---~oo ( ~ 0 , 0 3 4 9  for the SC lattice, ~p~0,0359 

for FCC and hexagonal). The experimental values are finite also for low ~ (=0.02), which 

indicates small % (apparently ~,<0,02) in real granular porous media. In a numerical mod- 
eling of overlapping spheres in an RCP lattice, [4] found a value % (RCP) ~0,03 Among 
ordered lattices a significantly lower ~c is found only in the volume centered lattice: %~ 
0.0055. The low value of ~c in real granular porous media may be related to several factors. 
Among these is scattering in grain dimensions. In the experiments of [2] the dispersion of 
grain dimensions was 20%, which probably led to denser packing, since the experiments of [7] 
indicate that in the presence of scattering over size the grain locations are more densely 
packed. Moreover, the low value of ~c in other experiments may be related to a small addi- 
tion (~3% 0f the total mass) of grains the size of which is much smaller than that of the 
main fraction. Lying in the pores between the coarse grains and forming an RCP lattice just 
like the coarse fraction, the fine fraction can reduce % from a value of %~(~c (RCP) z 0.03 
to %~(% (RCP)) 2 = 0.001. Finally, the smallness of % may be controlled by sintering 
processes in the granular media. 

In the ordered model considered in the critical region, i.e., for 0< ~--~______h << I: 
% 

~ .  (~p - -  % ) I  ( 1 2 )  

The value of �9 may be obtained by expanding Eqs. (2) and (5) in the small parameter (~--%) 
from Eq. (4). The quantity �9 is determined bythe geometry of the individual channel, name- 
ly the dependence r(z) near z = 0, which has the form: 

r (z) ~ o~ q- ~z m, (13) 

where 8 is a constant and the exponent m = 2 for the case of spherical grains considered. 
Equation (ii) can be obtained from Eq. (5) as z + 0. In the critical region ~ (~--~c) , and 
the value of a is determined by the integral 

1 ,c dz 
g ~ (~z + pz~n) ~ ' (14)  

which  d i v e r g e s  a s  u + 0 a s  a - ' ,  where  ~ = 2 - 1/m ( t h e  v a l u e  c o f  t h e  u p p e r  l i m i t  i n  Eq. ( 14 )  
i s  i n s i g n i f i c a n t ) .  F o r  o u r  c a s e  m = 2 and t h e  e x p o n e n t  x = 3 / 2 .  T h i s  i s  a l s o  v a l i d  f o r  t h e  
gas  d i f f u s i o n  c o e f f i c i e n t  D i n  t h e  p o r e s  f o r  t << a .  However ,  t h i s  r e l a t i o n s h i p  becomes u n s a t -  
i s f i e d  a s  a + 0,  where  t ~ a .  T h e r e f o r e ,  i n  t h e  q u a s i - K n u d s e n  r e g i m e  D ~ a ( ~ - - ~ c ) ~  (~--%)~+k 
The gas  p e r m e a b i l i t y  K may be c a l c u l a t e d  i n  a n a l o g y  t o  t h e  a b o v e ,  K ~  (~--~)~+% 

I n  t h e  model  c o n s i d e r e d  a l l  p o r e s  h a v e  i d e n t i c a l  e l e c t r i c a l  c o n d u c t i v i t y  g ,  and t h e  
s t r u c t u r e  i s  c o m p l e t e l y  o r d e r e d .  I n  r e a l  g r a n u l a r  m e d i a  w i t h  ~ > > ~  t h e r e  e x i s t s  some s c a t t e r -  
i ng  i n  g v a l u e s .  C o n s i d e r a t i o n  o f  t h i s  f a c t  does  n o t  l e a d  t o  q u a l i t a t i v e  d i f f e r e n c e s  f rom 
t h e  model  d e s c r i b e d  a b o v e ,  and ~(~) can  be c a l c u l a t e d  f o r  a c o n c r e t e  medium by t h e  e f f e c t i v e  
medium model  o f  [ 8 ] .  I n  t h e  c r i t i c a l  r e g i o n  t h e  e f f e c t  o f  n o n o r d e r  i n  t h e  l a t t i c e ,  r e l a t e d  
t o  d i s a p p e a r a n c e  o f  a s i g n i f i c a n t  p o r t i o n  o f  t h e  p o r e s  due t o  p r e s s i n g ,  p r o v e s  s i g n i f i c a n t :  
t h e  v a l u e  o f  x i n  Eq.  ( 12 )  d i f f e r s  f rom 3 /2  ( f o r  s p h e r i c a l  g r a i n s ) .  
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Fig. 3. Comparison of calculation of electrical conductivity o by Eq. 
(2) with experimental data of [2] (o0, intrinsic conductivity of elec- 
trolyte filling pores). Calculated curves: i, SC lattice; 2, FCC; 3, 
hexagonal. Experimental points: 4, grain size 44-53 Pm; 5, 88-106 Pm; 
6, 176-210 Pm. 

Fig. 4. Comparison of calculation of inverse gas permeability a~/K 
by Eq. (2) with experimental data of [2]. Curves and points correspond 
to same lattices and grain size as in Fig. 3. Mean value within each 
grain group taken for a 0 in calculations. 

To estimate �9 in real granular medium we find the quantity p - the fraction of pores 
with g > 0 in the lattice of pores formed by the initial configuration of undeformed spheres 
(the pore lattice is determined by construction of Voronov polyhedra [4] around the grains). 
For large ~ p=l , with decrease in ~ there appear pores with g = 0 in a fraction (l--p(~)) . 
For ~=~, (p(%)=p~) the pore lattice ceases to be interconnected, o(~c)=0 Realistic medi- 
um models lead to the relationship (9--~,)~ (p--pc) in the critical region. In percolation 

P--Pc 
theory lattice problems for 0<-- <<I o~ (/}_p~)t If the electrical conductivity of the 

pores g takes on two values 0 and gl, i.e., the distribution function fg = (i - p)6(0) + 
p6(gl), then t = t u ~ 2.0 [9]. However, as was shown in [i0, ii], in the case where fg has 
the form 

L (15) /g== ( 1 - - p ) ~ ( 0 ) ~ p  g~ , 

t h e  v a l u e  t = t u  + ~ / ( 1  --  ~ )  ( i n  Eq.  ( 1 5 )  0 < w < 1,  t h e  c o e f f i c i e n t  L b e i n g  d e t e r m i n e d  by n o r m -  
a l i z a t i o n  ~ f ~ d g  = 1 ) .  To d e t e r m i n e  t h e  f o r m  o f  f g  i n  t h e  c a s e  o f  a g r a n u l a r  p o r o u s  medium 
we a s s u m e  t h a ~  t h e  d i m e n s i o n s  ~ o f  t h e  p o r e  c h a n n e E t h r o a t s  a r e  d i s t r i b u t e d  o v e r  t h e  r a n g e  
0 < ~ < amax w i t h  a d i s t r i b u t i o n  f u n c t i o n  f a  = (1  - p ) 6 ( 0 )  + p . c o n s t  a n d  t h a t  e l e c t r i c a l  c o n d u c -  
t i v i t y - o f  t h e  c h a n n e l s  g ~ ~v (n  = 2 - l / m ,  m b e i n g  d e t e r m i n e d  f r o m  Eq.  ( 1 3 ) ) .  T h e n ,  t r a n s -  

d~ 
f o r m i n g  f r o m  f ~  t o  ff~=[~ ~ ,  we o b t a i n  f o r  f g  t h e  f o r m  o f  Eq.  ( 1 5 )  w i t h  ~ = 1 - 1 / ~ .  T h i s  

m e a n s  t h a t  i n  t h e  c a s e  o f  g r a n u l a r  p o r o u s  m e d i a  w i t h  m = 2 , t  = t u + 1 / 2  ~ 2 . 5 ,  i . e . ,  t h e  i n d e x  
�9 = 2.5. 

A more detailed treatment of the function o(~) of an unordered lattice is possible if 
the model is concretized. However, the results of o(9) calculation in such a model depend on 
the concrete details and comparison with experimental data is difficult. 
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In conclusion, we note that the simple 0(9) calculation considered above within the 
framework of an ordered model satisfactorily describes data for real granular porous media 
at not too large % However for a more exact description, together with the geometric char- 
acteristics of the pore channels contained in the ordered model considered above, the model 
of the porous medium should consider disorder of the pore lattice, which determines o at low 
9 

NOTATION 

a, a0, half the distance between sphere centers (a 0 corresponds to original location); 
A, B, parameters of single-cavity hyperboloid of revolution; Co, L, constants; D, effective 
gas diffusion coefficient in porous medium; F, dimensionless gas permeability; fg, f~, pore 
distribution functions over electrical conductivity and throat radius; g, electrical conduc- 
tivity of individual pore channel; h, ratio of surface radii of curvature; K, gas permeabil- 
ity of porous medium; KH, KH, approximate and exact gas permeability values for problem with 
single-cavity hyperboloid of revolution; k, gas permeability of individual porous channel; 
~, m, t, t u, v, ~, m, exponents in power laws; N, number of closest neighbors of sphere; P, 
gas pressure; p, fraction of bond-pores in pore lattice; R, radius of spherical grains; r, 
pore channel radius; S, cross-sectional area of channel; V, potential; 8/3n, derivative along 
normal to the surface; v, gas velocity; w, ratio of pore surface area to material volume; x, 
y, z, coordinates; ~, 8, pore channel parameters; ~, hyperboloid parameter; D, gas viscosity; 
~=R/a: o0, electrical conductivity of electrolyte filling pores; o, effective electrical con- 
ductivity of porous medium; o H , o H , quantities proportional to inverse of hyperboloid resis- 
tance (approximate and exact values); ~ , porosity; ~ , critical porosity value. 
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